skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eugenio Aulisa, Giacomo Capodaglio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we design efficient quadrature rules for finite element (FE) discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work, we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the “mollified” solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient FE assembly. 
    more » « less
  2. We present a computational study of several preconditioning techniques for the GMRES algorithm applied to the stochastic diffusion equation with a lognormal coefficient discretized with the stochastic Galerkin method. The clear block structure of the system matrix arising from this type of discretization motivates the analysis of preconditioners designed according to a field-splitting strategy of the stochastic variables. This approach is inspired by a similar procedure used within the framework of physics based preconditioners for deterministic problems, and its application to stochastic PDEs represents the main novelty of this work. Our numerical investigation highlights the superior properties of the field-split type preconditioners over other existing strategies in terms of computational time and stochastic parameter dependence. 
    more » « less